
© Copyright Ian D. Romanick 2008

11-March-2008

VGP352 – Week 10

⇨ Agenda:
­ Texture rectangles
­ Post-processing effects

­ Filter kernels
­ Simple blur
­ Edge detection

­ Separable filter kernels
­ Gaussian blur

­ Depth-of-field

© Copyright Ian D. Romanick 2008

11-March-2008

Texture Rectangle

⇨ Cousin to 2D textures

© Copyright Ian D. Romanick 2008

11-March-2008

Texture Rectangle

⇨ Cousin to 2D textures
­ Interface changes:

­ New target: GL_TEXTURE_RECTANGLE_ARB
­ New sampler: sampler2DRect
­ New sampler functions: texture2DRect,

texture2DRectProj, etc.

© Copyright Ian D. Romanick 2008

11-March-2008

Texture Rectangle

⇨ Cousin to 2D textures
­ Interface changes:

­ New target: GL_TEXTURE_RECTANGLE_ARB
­ New sampler: sampler2DRect
­ New sampler functions: texture2DRect,

texture2DRectProj, etc.
­ Minimization filter can only be GL_LINEAR or

GL_NEAREST
­ Coordinate wrap mode can only be GL_CLAMP,

GL_CLAMP_TO_EDGE, or GL_CLAMP_TO_BORDER

© Copyright Ian D. Romanick 2008

11-March-2008

Texture Rectangle

⇨ Cousin to 2D textures
­ Interface changes:

­ New target: GL_TEXTURE_RECTANGLE_ARB
­ New sampler: sampler2DRect
­ New sampler functions: texture2DRect,

texture2DRectProj, etc.
­ Minimization filter can only be GL_LINEAR or

GL_NEAREST
­ Coordinate wrap mode can only be GL_CLAMP,

GL_CLAMP_TO_EDGE, or GL_CLAMP_TO_BORDER
­ Dimensions need not be power of two

© Copyright Ian D. Romanick 2008

11-March-2008

Texture Rectangle

⇨ Cousin to 2D textures
­ Interface changes:

­ New target: GL_TEXTURE_RECTANGLE_ARB
­ New sampler: sampler2DRect
­ New sampler functions: texture2DRect,

texture2DRectProj, etc.
­ Minimization filter can only be GL_LINEAR or

GL_NEAREST
­ Coordinate wrap mode can only be GL_CLAMP,

GL_CLAMP_TO_EDGE, or GL_CLAMP_TO_BORDER
­ Dimensions need not be power of two
­ Texture accessed by coordinates on [0, w-1]×[0, h-1]

instead of [0, 1]×[0, 1]

© Copyright Ian D. Romanick 2008

11-March-2008

Post-processing Effects

⇨ Apply an image space effect to the rendered
scene after it has been drawn

­ Examples:
­ Blur
­ Enhance contrast
­ Heat “ripple”
­ Color-space conversion (e.g., black & white, sepia, etc.)
­ Many, many more

© Copyright Ian D. Romanick 2008

11-March-2008

Post-processing Effects

⇨ Overview:
­ Render scene to off-screen target (framebuffer object)

­ Off-screen target should be same size as on-screen window
­ Additional information may need to be generated

­ Render single, full-screen quad to window
­ Use original off-screen target as source texture
­ Configure texture coordinates to cover entire texture

­ Texture rectangles are really useful here
­ Configure fragment shader to perform desired effect

© Copyright Ian D. Romanick 2008

11-March-2008

Post-processing Effects

⇨ Configure viewport, projection, and modelview
matrices to 1-to-1 mapping

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, w, 0, h, -1, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

⇨ Draw full-screen quad with appropriate texture
coordinates

glBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(0.0, 0.0);
glTexCoord2f(1.0, 0.0); glVertex3f(1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(1.0, 1.0);
glTexCoord2f(0.0, 1.0); glVertex3f(0.0, 1.0);
glEnd();

© Copyright Ian D. Romanick 2008

11-March-2008

Post-processing Effects

⇨ Texture coordinate notes:
­ If a texture rectangle is used, texture coordinates will

be [0, w-1]×[0, h-1] instead of [0, 1]×[0, 1]
­ If neighbor texels will need to be accessed, the texel

size [1 / (w-1), 1 / (h-1)] must be supplied as a uniform
­ Not needed for texture rectangles! Texel size is always 1!

­ To access many neighbors, pre-calculate some in
coordinates in vertex shader
gl_TexCoord[0] = gl_MultiTexCoord0;
gl_TexCoord[1] = gl_MultiTexCoord0
 + vec4(ts.x, 0.0, 0.0, 0.0);
gl_TexCoord[2] = gl_MultiTexCoord0
 + vec4(0.0, ts.y, 0.0, 0.0);
gl_TexCoord[3] = ...

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Can represent our filter operation as a sum of
products over a region of pixels

­ Each pixel is multiplied by a factor
­ Resulting products are accumulated

⇨ Commonly represented as an n×m matrix
­ This matrix is called the filter kernel
­ m is either 1 or is equal to n

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Uniform blur over 3x3 area:
­ Larger kernel size results in

more blurriness

1
9 [

1 1 1
1 1 1
1 1 1]

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Edge detection

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Edge detection
­ Take the difference of each pixel

and its left neighbor

p x , y −p x−1, y 

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Edge detection
­ Take the difference of each pixel

and its left neighbor

­ Take the difference of each pixel
and its left neighbor

p x , y −p x−1, y 

p x , y−p x1, y

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Edge detection
­ Take the difference of each pixel

and its left neighbor

­ Take the difference of each pixel
and its left neighbor

­ Add the two together

p x , y −p x−1, y 

p x , y−p x1, y

2 p x , y−p x−1, y−p x1, y 

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Rewrite as a kernel

[
0 0 0
−1 2 −1
0 0 0]

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Rewrite as a kernel

⇨ Repeat in Y direction

[
0 0 0
−1 2 −1
0 0 0]

[
0 −1 0
−1 4 −1
0 −1 0]

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Rewrite as a kernel

⇨ Repeat in Y direction

⇨ Repeat on diagonals

[
0 0 0
−1 2 −1
0 0 0]

[
0 −1 0
−1 4 −1
0 −1 0]

[
−1 −1 −1
−1 8 −1
−1 −1 −1]

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware
­ Since the filter is a sum of products, it could be done

in multiple passes

© Copyright Ian D. Romanick 2008

11-March-2008

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware
­ Since the filter is a sum of products, it could be done

in multiple passes
­ Or maybe there's a different way altogether...

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ Some 2D kernels can be re-written as the
product of 2 1D kernels

­ These kernels are called separable
­ Applying each 1D kernel requires n texture reads per

pixel, doing both requires 2n
­ 2n ≪ n2

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ Some 2D kernels can be re-written as the
product of 2 1D kernels

­ These kernels are called separable
­ Applying each 1D kernel requires n texture reads per

pixel, doing both requires 2n
­ 2n ≪ n2

⇨ 2D kernel is calculated as the product of the 1D
kernels

k x , y=k xx ×k y y 

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ The 2D Gaussian filter is
the classic separable
filter

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ The 2D Gaussian filter is
the classic separable
filter

­ Product of a Gaussian
along the X-axis

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ The 2D Gaussian filter is
the classic separable
filter

­ Product of a Gaussian
along the X-axis

­ ...and a Gaussian along
the Y-axis

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ Implementing on a GPU:
­ Use first 1D filter on source image to window
­ Configure blending for source × destination

glBlendFunc(GL_DST_COLOR, GL_ZERO);
­ Use second 1D filter on source image to window

© Copyright Ian D. Romanick 2008

11-March-2008

Separable Filter Kernels

⇨ Implementing on a GPU:
­ Use first 1D filter on source image to window
­ Configure blending for source × destination

glBlendFunc(GL_DST_COLOR, GL_ZERO);
­ Use second 1D filter on source image to window

⇨ Caveats:
­ Precision can be a problem in intermediate steps
­ May have to use floating-point output
­ Can also use 10-bit or 16-bit per component outputs

as well
­ Choice ultimately depends on what the hardware supports

© Copyright Ian D. Romanick 2008

11-March-2008

References

http://www.archive.org/details/Lectures_on_Image_Processing

http://www.archive.org/details/Lectures_on_Image_Processing

© Copyright Ian D. Romanick 2008

11-March-2008

Break

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ A point of light focused
through a lens becomes a
point on object plane

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ A point of light focused
through a lens becomes a
point on object plane

⇨ A point farther than the focal
distance becomes a blurry
spot on the object plane

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ A point of light focused
through a lens becomes a
point on object plane

⇨ A point farther than the focal
distance becomes a blurry
spot on the object plane

⇨ A point closer than the focal
distance becomes a blurry
spot on the object plane

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ A point of light focused
through a lens becomes a
point on object plane

⇨ A point farther than the focal
distance becomes a blurry
spot on the object plane

⇨ A point closer than the focal
distance becomes a blurry
spot on the object plane

⇨ These blurry spots are called
circles of confusion (CoC
hereafter)

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
­ Most of the time this is okay

­ In a game, the player may want to focus on foreground and
background objects in rapid succession. Until we can track
where the player is looking on the screen, the only way this
works is to have everything in focus.

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
­ Most of the time this is okay

­ In a game, the player may want to focus on foreground and
background objects in rapid succession. Until we can track
where the player is looking on the screen, the only way this
works is to have everything in focus.

­ For non-interactive sequences, DoF can be a very
powerful tool!

­ Film makers use this all the time to draw the audience's
attention to certain things

­ Note the use of DoF in Citizen Kane

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ Straight-forward GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ At each pixel determine CoC size based on depth value
­ Blur pixels within circle of confusion

­ To prevent in-focus data from bleeding into out-of-focus data, do not
use in-focus pixels that are closer than the center pixel

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ Straight-forward GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ At each pixel determine CoC size based on depth value
­ Blur pixels within circle of confusion

­ To prevent in-focus data from bleeding into out-of-focus data, do not
use in-focus pixels that are closer than the center pixel

⇨ Problem with this approach?

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ Straight-forward GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ At each pixel determine CoC size based on depth value
­ Blur pixels within circle of confusion

­ To prevent in-focus data from bleeding into out-of-focus data, do not
use in-focus pixels that are closer than the center pixel

⇨ Problem with this approach?
­ Fixed number of samples within CoC

­ Oversample for small CoC
­ Undersample for large CoC

­ Could improve quality with multiple passes, but
performance would suffer

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled
image

­ Reduced size and filter kernel size are selected to produce maximum
desired CoC size

­ Linearly blend between original image and blurred image
based on per-pixel CoC size

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled
image

­ Reduced size and filter kernel size are selected to produce maximum
desired CoC size

­ Linearly blend between original image and blurred image
based on per-pixel CoC size

⇨ Problems with this approach?

© Copyright Ian D. Romanick 2008

11-March-2008

Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled
image

­ Reduced size and filter kernel size are selected to produce maximum
desired CoC size

­ Linearly blend between original image and blurred image
based on per-pixel CoC size

⇨ Problems with this approach?
­ No way to prevent in-focus data from bleeding into

out-of-focus data

© Copyright Ian D. Romanick 2008

11-March-2008

References

J. D. Mulder, R. van Liere. Fast Perception-Based Depth of Field
Rendering, In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology (Seoul, Korea, October 22 - 25,
2000). VRST '00. ACM, New York, NY, 129-133.
http://homepages.cwi.nl/~mullie/Work/Pubs/publications.html

Guennadi Riguer, Natalya Tatarchuk, John Isidoro. Real-time Depth
of Field Simulation, In ShaderX2, Wordware Publishing, Inc., Oc-
tober 25, 2003. http://ati.amd.com/developer/shaderx/

M. Kass, A. Lefohn, J. Owens. 2006. Interactive Depth of Field
Using Simulated Diffusion on a GPU. Technical Memo #06-01,
Pixar Animation Studios. http://graphics.pixar.com/DepthOfField/

http://homepages.cwi.nl/~mullie/Work/Pubs/publications.html
http://ati.amd.com/developer/shaderx/
http://graphics.pixar.com/DepthOfField/

© Copyright Ian D. Romanick 2008

11-March-2008

Next week...

⇨ Projects due at the start of class
⇨ Oh yeah...the final!

© Copyright Ian D. Romanick 2008

11-March-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

